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Abstract. We show that the semi-leptonic decay B+ → π+π−�+ν� can be used as a source of information
for two-pion distribution amplitudes. The connection between these amplitudes and the B-meson decay
width is achieved by the light cone sum rule method. We show the relevant distribution amplitudes and
give the formula for the decay width.

1 Introduction

Recently, two-pion distribution amplitudes (2πDAs) have
received considerable interest [1,2] because of their rela-
tion to skewed parton distributions [3]. From an exper-
imental point of view the 2πDAs have been mostly dis-
cussed for the reaction γγ∗ → ππ [4–7], where the factor-
ization has been proven in [8,9], and also in hard exclusive
electroproduction [10,11]. Here, we want to add another
type of reaction which could provide valuable insight in
the dynamics of the formation of two pions, namely semi-
leptonic B-decays.

The reaction B → ππ�ν is an alternative source of
information about the 2πDAs as compared to γγ∗ → ππ
because new structures arise due to the fact that the semi-
leptonic weak decay induces an axial vector current in
addition to the vector current and the fact that the B-
meson is a pseudoscalar particle.

The method used here to connect the 2πDAs with the
B-meson decay width is the method of light cone sum
rules (LCSR), where the decay amplitude B → ππ�ν is
related to the light cone OPE of the corresponding cor-
relation function. Factorization into the 2πDAs and the
hard amplitude here is guaranteed by the large virtuality
of the off-shell currents. The light cone sum rule method
applied here is essentially the same as used in B → π�ν
[12,13] and B → ρ�ν [14], with the only distinction that
the 2πDAs enter. The advance of B-factories may yield
a lot of new experimental data on the decay B → ππ�ν,
where explicit models for the various 2πDAs entering in
this process may be tested and could yield a deepening
understanding of the non-perturbative multi-particle dy-
namics which lies behind these generalized distribution
amplitudes.

2 The method
2.1 Kinematics

We consider the process B+ → π+π−�+ν�. The kinematics
of the process is given by B(q) → �(pe) + ν(q′ − pe) +

π+(k1) + π−(k2) and there exist two light-like vectors n+

and n− with n+n− = 1/2 such that

q = (mB , 0, 0, 0) = mB

(
n+ + n−) ,

q′ = q′−n+ + q′+n− (1)

in the rest frame of the B-meson. We can now make a di-
vision into “good” (+) and “bad” (-) components, where
the “bad” components can be neglected requiring mB �
q′
− > 0 and m2

B � P 2 = (k1 + k2)2 = W 2. This require-
ment is necessary to ensure the factorization in the ap-
proach of the LCSR technique at the stage where the vir-
tual amplitude is factorized in a hard scattering part and
the 2πDAs. The factorization follows in complete analogy
with the γγ∗ case. Under these circumstances P 2/m′

B
2,

using m′
B = mB − q′

− can be considered as a small ex-
pansion parameter and we can decompose:

P = q − q′ = k1 + k2 = m′
Bn+ +

P 2

m′
B

n−,

k1 = ζm′
Bn+ + ζ̄

P 2

m′
B

n− + K⊥,

k2 = ζ̄m′
Bn+ + ζ

P 2

m′
B

n− − K⊥, (2)

using ζ̄ = 1 − ζ. In this way we have set up a similar light
cone decomposition as in the case γγ∗ → ππ.

For the light cone sum rule technique to apply we need
to consider a situation where the B-meson is off shell.
One can achieve this in the frame-work of the kinematics
discussed so far by simply changing

q → mBn+ +
q2

mB
n−. (3)

The two light-like vectors n+ and n− are still the same as
in (1).
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Fig. 1. Diagrammatic representation of the correlation func-
tion. The wavy line represents the external “B-meson current”
JB and the dashed line the weak current Jweak

2.2 The correlator and the distribution amplitudes

For the application of the LCSR approach one considers a
correlation function of a pseudoscalar and a weak current
with a quark content that corresponds to the one of a
B±-meson:

Tµ(q, q′) = i
∫

d4xe−iq′x〈0|T [JB(0), Jweak
µ (x)]|π+π−(P )〉,

JB(x) = ū(x)iγ5b(x),

Jweak
µ (x) = b̄(x)iγµ(1 − γ5)u(x). (4)

In this correlation function the B-meson is interpolated
by a current JB with four-momentum q, which is off shell.
Jweak

µ is the weak b → u transition current. The diagram-
matic representation of Tµ is shown in Fig. 1. Depending
on their angular momentum the two pions in the final
state can have odd or even parity. With the definition

〈π+π−(P )|q̄(x)Γq(0)|0〉x2=0 = Φ[Γ ]
q , (5)

we can parameterize the structures that will occur in our
correlation function to leading-twist accuracy:

twist − 2 :

Φ[iσµν ]
q =

(k1µk2ν − k2µk1ν)
2W

∫ 1

0
dzfππ

⊥q (z, ζ,W 2)eizP ·x

=
(PµRν − RµPν)

4W

∫ 1

0
dzfππ

⊥q (z, ζ,W 2)eizP ·x,

Φ[γµγ5]
q = εµk1k2x

∫ 1

0
dzgππ

q (z, ζ,W 2)eizP ·x

= εµPRx

∫ 1

0
dzgππ

q (z, ζ,W 2)eizP ·x,

Φ[γµ]
q = Pµ

∫ 1

0
dzfππ

q (z, ζ,W 2)eizP ·x,

twist − 3 :

Φ[1]
q = W

∫ 1

0
dzeππ

q (z, ζ,W 2)eizP ·x,

Φ[γ5]
q = 0, (6)

using Rµ = k2µ −k1µ. In particular, we find P ·R = 0 and
R2 = 4m2

π − W 2. We only need one of the two Lorentz
structures iσµνγ5 and σµν , as they are related to each
other by

σµν =
i
2
εµναβσαβγ5. (7)

With this decomposition we obtain for the correlation
function (4)

Tµ = iεµPRq′

×Vub

[
2mbg

ππ
u (z, ζ,W 2)

((Pz + q′)2 − m2
b)2

+
fππ

u⊥(z, ζ,W 2)/(4W )
(Pz + q′)2 − m2

b

]

+
Vub

(Pz + q′) − m2
b

×
[
mbPµf

ππ
u (z, ζ,W 2) − (Pz + q′)µWeππ

u (z, ζ,W 2)

−PµR · q′ − RµP · (Pz + q′)
4W

fππ
u⊥(z, ζ,W 2)

]
. (8)

2.3 Calculation of the decay amplitude
in the LCSR approach

The next step is to relate the decay amplitude to the distri-
bution amplitudes described to far. For this purpose one
inserts a complete set of states with B-meson quantum
numbers between the currents [12,13]:

Tµ(q2) =
∫

d4xe−iq′x 〈0|ū(0)iγ5b(0)|B〉
q2 − m2

B

×〈B|b̄(x)iγµ(1 − γ5)u(x)|ππ〉 + . . .

=
fBm2

B

mb(q2 − m2
B)

Mµ + . . . (9)

using

Mµ =
∫

d4xe−iq′x〈B|b̄(x)γµ(1 − γ5)u(x)|ππ〉. (10)

The ellipsis indicates all the other hadronic states which
in the end we will suppress by Borel transformation. The
next step is to define the discontinuity Disc:

Disc
[
Tµ(q2)

]
=

1
2πi

(
Tµ(q2 − iε) − Tµ(q2 + iε)

)
, (11)

and isolate Mµ using the standard duality approximation,∫ s0

m2
b

dsDisc [Tµ(s)] e−(s−m2
B)/M2 mb

m2
BfB

= Mµ. (12)

Now one can expand Mµ into an orthogonal system,

Mµ =
∫

d4xe−iq′x〈B|b̄(x)γµ(1 − γ5)u(x)|ππ〉,

Mµ = M1Pµ + M2Rµ + M3q
′′
µ +

i
2W 2M4εµPRq′′ ,

q′′
µ = q′

µ − R · q′

R2 Rµ − P · q′

P 2 Pµ. (13)

With this decomposition one gets the following LCSR re-
sults:

M1 =
∫ 1

0

dz
z

e−(s−m2
B)/M2

mb

m2
BfB
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×
[
mbf

ππ
u (z) − (R · q′)(s)

4W
fππ

u⊥(z)

− 1
2W

(
s + (2z − 1)W 2 − q′2

)
eππ
u (z)

]
Θ[c(z, sB

0 )],

M2 =
∫ 1

0

dz
z

e−(s−m2
B)/M2

mb

m2
BfB

[
− (R · q′)(s)

R2 eππ
u (z)

+
1

8W

(
s + (2z − 1)W 2 − q′2

)
fππ

u⊥(z)
]
Θ[c(z, sB

0 )],

M3 = −
∫ 1

0

dz
z

e−(s−m2
B)/M2

mb

m2
BfB

Weππ
u (z)Θ[c(z, sB

0 )],

M4 =
∫ 1

0

dz
z

e−(s−m2
B)/M2

mb

m2
BfB

[
W

2
fππ

u⊥(z)Θ[c(z, sB
0 )]

−4mbW
2gππ

u (z)

(
1

zM2Θ[c(z, sB
0 )] + δ[c(z, sB

0 )]

−δ[−c(z,m2
b)]

)]
, (14)

using

2(R · q′)(s) = (ζ̄ − ζ)
(
mBq′

+ − sq′
−

mB

)
,

s =
1
z

[
zz̄W 2 + m2

b − z̄q′2
]
,

c(z, sB
0 ) = zsB

0 − m2
b + z̄q′2 − zz̄W 2. (15)

Θ and δ functions arise from the continuum subtraction
[14]. More precisely we use

−1
π

Im
∫ 1

0
dz
∫ sB

0

m2
b

ds′e−(s′−m2
B)/M2

f(z)
(Pz + q′)2 − m2

b + iε

=
∫ 1

0

dz
z

e−(s−m2
B)/M2

f(z)Θ[c(z, sB
0 )]Θ[−c(z,m2

b)] and

−1
π

Im
∫ 1

0
dz
∫ sB

0

m2
b

ds′e−(s′−m2
B)/M2

f(z)
[(Pz + q′)2 − m2

b + iε]2

= − d
dα

∣∣∣∣
α=0

−1
π

Im
∫ 1

0
dz
∫ sB

0

m2
b

ds′e−(s′−m2
B)/M2

f(z)
(Pz + q′)2 − m2

b + iε + α

= −
∫ 1

0

dz
z

e−(s−m2
B)/M2

f(z)

×
[

1
zM2Θ[c(z, sB

0 )] + δ[c(z, sB
0 )] − δ[−c(z,m2

b)]
]
. (16)

Note that Θ[−c(z,m2
b)] = Θ[1 − z], and δ[−c(z,m2

b)] =
δ(1 − z)/(m2

b + zW 2 − q′2). In order to obtain the square
of the decay amplitude, we have to multiply MµMµ′ with
the leptonic scattering tensor

Lµµ′ =
∑
ss′

ūs(pe)γµ(1 − γ5)us′(pν)

×ūs′(pν)γµ′(1 − γ5)us(pe)

= 8
[
(q′

µ − peµ)peµ′ + (q′
µ′ − peµ′)peµ

−gµµ′(pe · q′ − m2
e) + iεµµ′q′pe

]
. (17)

Then one gets for the matrix element

|M |2 =
Lµµ′MµM∗

µ′

(M2
W − q′2)2

=

[
16(M1P · pe + M2R · pe + M3q

′′ · pe)

×(M1P · q′ + M2R · q′ + M3q
′′ · q′)

−16(M1P · pe + M2R · pe + M3q
′′ · pe)2

+4M2
4
R2

W 2 q
′′2
(
m2

e − (R · pe)2

R2 − (P · pe)2

W 2

− (q′′ · pe)2

q′′2

)
− 8

(
M2

1P
2 + M2

2R
2 + M2

3 q
′′2

−M2
4

R2

4W 2 q
′′2
)

(pe · q′ − m2
e) − 8

M4

W 2 εµµ′q′pe

×εµPRq′
(
M1Pµ′ + M2Rµ′ + M3q

′′
µ′
) ]

.

× 1
(M2

W − q′2)2
. (18)

Here we have dropped the weak coupling (g/(2(21/2)))4 for
simplicity. We will add it later to the phase-space element
in (23). The full expression (18) is rather complicated. To
simplify it we make first use of the fact that P 2/m′

B
2 is

small, so that we can throw away all “bad” components
connected with n− which corresponds to an expansion in
P 2/m′

B
2. Then we get approximately the following expres-

sions:

2P · q′ = m′
Bq′+ +

P 2

m′
B

q′− → mBq′+,

2pe · q′ = (q′2 + m2
e),

2P · pe = m′
Bp+

e +
P 2

m′
B

p−
e → mBp+

e ,

2R · q′ = (ζ̄ − ζ)
(
m′

Bq′+ − P 2

m′
B

q′−
)

→ (1 − 2ζ)mBq′+,

2R · pe = (ζ̄ − ζ)
(
m′

Bpe
+ − P 2

m′
B

pe
−
)

+ 4K⊥ · pe⊥

→ (1 − 2ζ)mBpe
+ + 4K⊥ · pe⊥. (19)

Here we have defined p+
e = 2pe · n+. The independent

variables are now q′+, p+
e and pe⊥. and one should note

that
K⊥2 = ζζ̄W 2 − m2

π. (20)

We can define the dimensionless quantities

x =
q′+

mB
, y =

p+
e

q′+ . (21)
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As mB � q′− we find also

q′2

m2
B


 x. (22)

To simplify the expression (18) further, we consider the
limit where q′ becomes quasi-light-like, i.e. q′2 = 0. Then
the leptonic part of the decay process simply factorizes
in analogy to the Weizsäcker–Williams approximation in
photoproduction; see, e.g., [15].

In this limit q′ is quasi-collinear to pe, and one obtains
after integration over the angle related to pe⊥ and after
dropping the electron masses for the total decay amplitude

dΓB

dζdxdydq′2dp2
e⊥

=
G2

F|Vub|2
8(4π)5mBy2x

(
1 − q′2

m2
Bx2

)
(

1 +
p2

e⊥
m2

Bx2y2

)
{

4m4
Bx2y(1 − y)

×
[
M1 + (1 − 2ζ)M2 − M3

m2
B

2W 2x

×
(

1 + (1 − 2ζ)2
W 2

4m2
π − W 2

)]2

−32
(
M2 − M3x

(1 − 2ζ)m2
B

4mπ − W 2

)2

|K⊥|2|pe⊥|2

+2M2
4
m4

Bx2

W 4 |K⊥|2|pe⊥|2
}
,

using

GF√
2

=
4παem

8 sin2(θW)M2
W

. (23)

3 Discussion

Equation (23) is a simplified form of the decay width in
the limits q′2 → 0 and P 2/m′2

B → 0. In Appendix A we
will show the full result for finite q′2 and P 2. Of the four
distribution amplitudes fππ, gππ, eππ and fππ

⊥ only the
asymptotic form of fππ is known and there have been
attempts to model this function and fππ

⊥ in terms of the
instanton vacuum [2].

A calculation of the other distribution amplitudes is
beyond the scope of this article. However, we can see if we
are able at least to obtain the order of magnitude correct
if we neglect all contributions except fππ where we posses
the expression for the asymptotic form and compare the
semi-leptonic decay B → ππ�ν with the semi-leptonic de-
cay B → ρ�ν. Neglecting eππ, hππ and gππ may not be
so unreasonable, as the first one is twist-3 (i.e. a higher-
twist contribution) and the other two are connected to
“polarization” states where we know from the experiences

Fig. 2. Square of the time-like pion form factor (F 2
π ) in the

HLS parameterization

of spin physics that the contribution of the quarks is rel-
atively small. If, in this sense, we only retain the contri-
bution from fππ, we obtain a simple expression for the
branching ratio B(B → ππ�ν):

dB(B → ππ�ν)
dζdxdydq′2dp2

e⊥
=

G2
F|Vub|2

2(4π)5mBΓBy2x

(
1 − q′2

m2
Bx2

)
(

1 +
p2

e⊥
m2

Bx2y2

)

×m4
Bx2y(1 − y)

(
M twist−2

1

)2
,

M twist−2
1 =

∫ 1

0

dz
z

e−(s−m2
B)/M2

Θ[c(z, sB
0 )]

m2
b

m2
BfB

fππ
u (z),

(24)
where ΓB is the total B-meson decay width.

4 Numerical estimates

Now, we try to make some order of magnitude estimates
for a comparison between the semi-leptonic decay of a B-
meson into two pions on the one hand and into a ρ-meson
on the other hand. For fππ one can use the asymptotic
form given in [2]:

fππas
u (z, ζ,W 2) = 6z(1 − z)(2ζ − 1)Fπ(W 2). (25)

Fπ(W 2) is the pion form factor in the time-like region, nor-
malized by Fπ(0) = 1. For the pion form factor in the time-
like region we use the fit from the CMD2-Collaboration
[16] using the hidden local symmetry (HLS) parameteri-
zation, which is displayed in Fig. 2. The shape of the time-
like pion form factor is a characteristic superposition of the
ω and ρ resonances.

For the numerics we take GF = 1.16639×10−5GeV−2,
Γ−1

B = 1.62 × 10−12s, mB = 5.279GeV, and Vub = 0.0035
[17]. The value of Vub is an average value where the error
assigned to it is of the order of 50%. For the decay width
fB we make use of the corresponding sum rule expression,
see e.g. [18]:

f2
B =

m2
b

m4
B

exp
(
m2

B − m2
b

M2

)
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×
[

− mb〈q̄q〉µ2=M2 − mb

2M2

(
1 − m2

b

2M2

)
〈q̄σgGq〉µ2=M2

+
3

8π2

∫ sB
0

m2
b

sdse−(s−m2
b)/M2

(
1 − m2

b

s

)2
]
, (26)

〈q̄q〉µ2 =
(

αs(µ)
αs(µ0)

)−4/β0

〈q̄q〉µ2
0
,

〈q̄σgGq〉µ2 =
(

αs(µ)
αs(µ0)

)2/(3β0)

〈q̄σgGq〉µ2
0
,

β0 =
11
3
Nc − 2

3
nf ,

〈q̄q〉1 GeV2 = −245 MeV3,

〈q̄σgGq〉1 GeV2 = 0.65 GeV2〈q̄q〉1 GeV2 . (27)

The values of the condensates at µ0 = 1 GeV have been
taken from [14]. In the formula for fB radiative corrections
are not taken into account because they are not taken into
account in all the other LCSR calculations presented or
used here either. For the same reason we use for αs the
one-loop expression

αs(µ) =
4π

β0 ln(µ2/Λ2)
, (28)

using Λ(5) = 0.208 GeV and for the threshold masses in
the evolution mc = 1.25 GeV and mb = 4.2 GeV [17]. The
sum rule parameters are chosen as in [14]. They can be
obtained from Table 1. For the calculation of the decay
width the central values have been used, and for the er-
ror the maximal deviation to the left and right border.
For the dependence on the Borel parameter in Fig. 3 we
consider the differential branching ratio at q′2 = 0 using
the central values for the other sum rule parameters and
integrating p2

e⊥ ∈ [0,m2
Bx2/4], y ∈ [0, 1], ζ ∈ [0, 1]. The

value for x is fixed at the ρ pole in the HLS parameteriza-
tion, i.e. x = 1−m2

ρ,HLS/m
2
B , with mρ,HLS = 774.57 MeV.

This means x ≈ 0.97847, so effectively x is close to 1 if
the invariant mass of the two pions is in the vicinity of
the ρ-meson pole. It can be seen that the dependence on
the Borel parameter is rather strong, as we only consider
the asymptotic form without any higher-twist contribu-
tions or radiative corrections. Furthermore, for simplicity,
we have kept the other sum rule parameters fixed. In prin-
ciple they should vary with the Borel parameter as given
e.g. in Table 1.

As the ρ-meson decays nearly exclusively into two pi-
ons there should be a chance to match the branching ratio
for the semi-leptonic decay B → ππ�ν with the corre-
sponding decay B → ρ�ν. More precisely we have to in-
tegrate the branching ratio over W ∈ [mρ − Γρ,mρ + Γρ],
i.e. the ρ-meson pole and compare

dB(B± → ν�±π+π−)
dq′2

∣∣∣∣
q′2=0

≡ dB(B0 → νe−ρ+)
4dq′2

∣∣∣∣
q′2=0

.

(29)

Fig. 3. Borel dependence of the differential branching ratio
B → ππ�ν. The value for x is fixed at the ρ pole in the HLS
parameterization, i.e. x = 1 − m2

ρ,HLS/m2
B , with mρ,HLS =

774.57MeV

Table 1. Sum rule parameters used in the calculation for the
estimate of the B-decay width. For the calculation of the decay
width the central values of the sum rule parameters have been
used, and for the error the maximal deviation to the left and
right border

M2 [GeV]2 sB
0 [GeV]2 mb [GeV]

left border 4 35 4.7
central value 6 34 4.8
right border 8 33 4.9

Here one factor 1/2 accounts for the fact that we have
to consider a ρ0 wave function instead for a ρ+ and an-
other factor 1/2 takes into account that we only consider
charged pions. B(B̄0 → ρ+e−ν̄) at q′2 = 0 only depends
on two form factors A1(0) and A2(0) [14]:

dB(B̄0 → ρ+e−ν̄)
dq′2

∣∣∣∣
q′2=0

=
G2

F|Vub|2
192π3m3

BΓB

√
λH2

0 ,

λ = (m2
B + m2

ρ)2 − 4m2
Bm2

ρ,

H0 =
1

2mρ

[
(m2

B − m2
ρ)(mB + mρ)A1(0)

− λ

mB + mρ
A2(0)

]
. (30)

For the two form factors A1(0) and A2(0) we use the values
in [14]:

A1(0) = 0.27 ± 0.05,
A2(0) = 0.28 ± 0.05. (31)

For the integration of the branching ratio B(B → ππ�ν)
over the ρ pole we take the range W 2 ∈ [(mρ−Γρ)2, (mρ +
Γρ)2], see Fig. 4. Hereby we use for the variable transfor-
mation from x to W 2 the fact that

W 2 = P 2 = m2
B

1 − x

x

(
x − q′2

m2
B

)
→ m2

B(1 − x). (32)

We can now compare the semi-leptonic branching ra-
tio B → ππ�ν with the equivalent B → ρ�ν, where the
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Fig. 4. Integration range over the ρ pole: The shaded area de-
picts the range of integration in W 2 of the differential branch-
ing ratio B → ππ�ν

additional factors are taken into account to make the two
quantities comparable. Using the central values of the sum
rule parameters for the calculation and obtaining the er-
ror from varying the sum rule parameters over the allowed
range we obtain

dB(B̄0 → ρ+�−ν̄)
4dq′2

∣∣∣∣
q′2=0

=
(
13.8+28.1

−13.8

)× 10−7GeV−2,

dB(B → ππ�ν)
dq′2

∣∣∣∣
q′2=0

= (3.0 ± 2.7) × 10−7GeV−2.

(33)

The consistency in the order of magnitude can be taken
as a hint that our approach is qualitatively correct. In our
case the large error results from the fact that we did nei-
ther take into account all 2πDAs nor the higher-twist cor-
rections and restricted ourselves to the asymptotic form
only. The big error in case of the B → ρ semi-leptonic
decay comes from the fact that in the kinematic region
we consider here, the decay width is the result of two
contributions that nearly cancel each other, cf. (30). The
number comes from the usual error analysis, and reveals
drastic effects. We should state that this is not a numeri-
cal estimate of the decay width, but rather a consistency
check: we should get the order of magnitude correct. The
important task that remains to be done is a modeling of
the 2πDAs which will then allow for a quantitative pre-
diction of the semi-leptonic decay of B-mesons into two
pions.

5 Summary and conclusions

To summarize, we have shown that the semi-leptonic de-
cay B± → π+π−ν�± can be described in the LCSR for-
malism using the two-pion distribution amplitudes. Major
observables, except for fππ and fππ

⊥ , are the twist-2 dis-
tribution amplitude gππ and the twist-3 amplitude eππ.
When we retain only the twist-2 distribution amplitude
fππ, where the asymptotic form is known, and compare
the semi-leptonic decay width B → ππ�ν with the cor-
responding decay width B → ρ�ν at q′2 = 0, we find
consistency in the order of magnitude.

Acknowledgements. I wish to acknowledge A. Khodjamirian
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A The full formula for the decay width

In the following we give the formula for the decay width
B+ → π+π−�+ν� for finite q′2 and P 2. The electron mass
is neglected in the calculation altogether. The formula can
be obtained from (18) by the following substitutions:

2P · q′ = m2
Bx +

x − x̄

x
q′2,

2pe · q′ = q′2,

2P · pe = (m2
Bx − q′2)y +

x̄

x

p2
e⊥
y

,

2R · q′ =
ζ̄ − ζ

x
[m2

Bx2 + q′2],

2R · pe = (ζ̄ − ζ)
[
(m2

Bx − q′2)y − x̄

x

p2
e⊥
y

]
+ 4K⊥ · pe⊥

= (2R · pe)‖ + 4K⊥ · pe⊥. (A.1)

In the limit q′2 → 0 and x̄ → 0 we reproduce the for-
mulas (19). For completeness we add here once more the
expressions for R2, P 2, and |K⊥|2:

P 2 = W 2 = m2
B

1 − x

x

(
x − q′2

m2
B

)
,

R2 = 4m2
π − W 2,

K⊥2 = ζζ̄W 2 − m2
π. (A.2)

Using the expressions above we can write down the total
decay width, integrated over the polar angle of pe⊥:

dΓB

dζdxdydq′2dp2
e⊥

=
G2

F|Vub|2
8(4π)5mBy2x

(
1 − q′2

m2
Bx2

)
(

1 +
p2

e⊥
m2

Bx2y2

)

×

16

[
M1P · pe + M2(R · pe)‖

+M3

(
q′ · pe − (R · q′)(R · pe)‖

R2 − (P · q′)(P · pe)
P 2

)]

×
[
M1P · q′ + M2R · q′

+M3

(
q′2 − (R · q′)2

R2 − (P · q′)2

P 2

)]

−16

[
M1P · pe + M2(R · pe)‖
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+M3

(
q′ · pe − (R · q′)(R · pe)‖

R2 − (P · q′)(P · pe)
P 2

)]2

−32|K ⊥ |2|pe⊥|2
(
M2 − M3

R · q′

R2

)2

+4M2
4
R2

P 2

[
−
(
q′2 − (R · q′)2

R2 − (P · q′)2

P 2

)

×
(

(R · pe)2‖
R2 +

(P · pe)2

P 2

)

−
(
peq

′ − (R · pe)‖(R · q′)
R2 − (P · pe)(P · q′)

P 2

)2

−2
|K⊥|2|pe⊥|2

R2

(
q′2 − (P · q′)2

P 2

)]

−4q′2
[
M2

1P
2 + M2

2R
2

+

(
M2

3 − M2
4

R2

4P 2

)(
q′2 − (P · q′)2

P 2 − (R · q′)2

R2

)]

−8
M4

P 2

[(
P · q′

[
(P · pe)(R · q′) − (P · q′)(R · pe)‖

]

+P 2q′2
[

(R · pe)‖ − 1
2
R · q′

])(
M1 − M3

P · q′

P 2

)

−
(
R · q′

[
(R · pe)‖(P · q′) − (R · q′)(P · pe)

]

+R2q′2
[
P · pe − 1

2
P · q′

])(
M2 − M3

R · q′

R2

)]


× M4
W

(M2
W − q′2)2

. (A.3)

In the form given above the decay width is easy to program
in a computer code.
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